Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Eur Rev Med Pharmacol Sci ; 27(4): 1681-1688, 2023 02.
Article in English | MEDLINE | ID: covidwho-2275151

ABSTRACT

OBJECTIVE: In this study, the effects of cell adhesion, inflammation and apoptotic changes on fetal development in cases of COVID-19 placenta were investigated. PATIENTS AND METHODS: Placenta tissue samples from 15 COVID-19 and 15 healthy pregnant women were taken after delivery. Tissue samples were fixed in formaldehyde, then blocked with paraffin wax and 4-6 µm thick sections were cut and stained with Harris Hematoxylene-Eosin. Sections were stained with FAS antibody and endothelial nitric oxide synthase (eNOS) antibody. RESULTS: In COVID-19 placenta section, deterioration of the root villus basement membrane structure in the maternal region, decidua cells and syncytial cell degeneration, significant increase in fibrinoid tissue, endothelial dysfunction in free villi and intense congestion in blood vessels, increase in syncytial nodes and bridges were observed. In terms of inflammation, eNOS expression was increased in Hoffbauer cells, dilated blood vessels endothelial cells in chorionic villi, and surrounding inflammatory cells. Positive FAS expression was also increased in the basement membranes of root and free villi, syncytial bridge and nodes, and endothelial cells. CONCLUSIONS: The effect of COVID-19 caused an increase in eNOS activity and acceleration of the proapoptotic process and the deterioration of cell-membrane adhesion.


Subject(s)
COVID-19 , Nitric Oxide Synthase Type III , fas Receptor , Female , Humans , Pregnancy , COVID-19/metabolism , Endothelial Cells , Nitric Oxide Synthase Type III/metabolism , Placenta/metabolism , fas Receptor/metabolism , Cell Adhesion , Inflammation , Apoptosis
2.
ACS Nano ; 17(3): 2761-2781, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2221751

ABSTRACT

Vascular disorders, characterized by vascular endothelial dysfunction combined with inflammation, are correlated with numerous fatal diseases, such as coronavirus disease-19 and atherosclerosis. Achieving vascular normalization is an urgent problem that must be solved when treating inflammatory vascular diseases. Inspired by the vascular regulatory versatility of nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) catalyzing l-arginine (l-Arg), the eNOS-activating effects of l-Arg, and the powerful anti-inflammatory and eNOS-replenishing effects of budesonide (BUD), we constructed a bi-prodrug minimalist nanoplatform co-loaded with BUD and l-Arg via polysialic acid (PSA) to form BUD-l-Arg@PSA. This promoted vascular normalization by simultaneously regulating vascular endothelial dysfunction and inflammation. Mediated by the special affinity between PSA and E-selectin, which is highly expressed on the surface of activated endothelial cells (ECs), BUD-l-Arg@PSA selectively accumulated in activated ECs, targeted eNOS expression and activation, and promoted NO production. Consequently, the binary synergistic regulation of the NO/eNOS signaling pathway occurred and improved vascular endothelial function. NO-induced nuclear factor-kappa B alpha inhibitor (IκBα) stabilization and BUD-induced nuclear factor-kappa B (NF-κB) response gene site occupancy achieved dual-site blockade of the NF-κB signaling pathway, thereby reducing the inflammatory response and inhibiting the infiltration of inflammation-related immune cells. In a renal ischemia-reperfusion injury mouse model, BUD-l-Arg@PSA reduced acute injury. In an atherosclerosis mouse model, BUD-l-Arg@PSA decreased atherosclerotic plaque burden and improved vasodilation. This represents a revolutionary therapeutic strategy for inflammatory vascular diseases.


Subject(s)
Atherosclerosis , COVID-19 , Cardiovascular Diseases , Animals , Mice , Arginine , Endothelial Cells/metabolism , Inflammation/drug therapy , NF-kappa B/metabolism , Nitric Oxide , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Cardiovascular Diseases/therapy
3.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1715568

ABSTRACT

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Subject(s)
Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Interaction Mapping
4.
Oxid Med Cell Longev ; 2022: 1630918, 2022.
Article in English | MEDLINE | ID: covidwho-1714452

ABSTRACT

BACKGROUND: The impairment of microcirculation is associated with the unfavorable outcome for extracorporeal membrane oxygenation (ECMO) patients. Studies revealed that pulsatile modification improves hemodynamics and attenuates inflammation during ECMO support. However, whether flow pattern impacts microcirculation and endothelial integrity is rarely documented. The objective of this work was to explore how pulsatility affects microcirculation during ECMO. METHODS: Canine animal models with cardiac arrest were supported by ECMO, with the i-Cor system used to generate nonpulsatile or pulsatile flow. The sublingual microcirculation parameters were examined using the CytoCam microscope system. The expression of hsa_circ_0007367, a circular RNA, was measured during ECMO support. In vitro validation was performed in pulmonary vascular endothelial cells (PMVECs) exposed to pulsatile or nonpulsatile flow, and the expressions of hsa_circ_0007367, endothelial tight junction markers, endothelial adhesive molecules, endothelial nitric oxide synthases (eNOS), and NF-κB signaling activity were analyzed. RESULTS: The pulsatile modification of ECMO enhanced microcirculatory perfusion, attenuated pulmonary inflammation, and stabilized endothelial integrity in animal models; meanwhile, the expression of hsa_circ_0007367 was significantly upregulated both in animals and PMVECs exposed to pulsatile flow. In particular, upregulation of hsa_circ_0007367 stabilized the expressions of endothelial tight junction markers zonula occludens- (ZO-) 1 and occludin, followed by modulating the endothelial nitric oxide synthases (eNOS) activity and inhibiting the NF-κB signaling pathway. CONCLUSION: The modification of pulsatility contributes to microcirculatory perfusion and endothelial integrity during ECMO. The expression of hsa_circ_0007367 plays a pivotal role in this protective mechanism.


Subject(s)
Cell-Free Nucleic Acids/genetics , Endothelial Cells/physiology , Extracorporeal Membrane Oxygenation/methods , Heart Arrest/therapy , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Dogs , Endothelial Cells/metabolism , Heart Arrest/genetics , Heart Arrest/pathology , Heart Arrest/physiopathology , Inflammation , Lung/blood supply , Lung/pathology , Microcirculation , Nitric Oxide Synthase Type III/metabolism , Occludin/genetics , Occludin/metabolism , Pulsatile Flow , Rats , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
5.
J Biol Chem ; 297(5): 101315, 2021 11.
Article in English | MEDLINE | ID: covidwho-1472025

ABSTRACT

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Subject(s)
Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , von Willebrand Factor/metabolism , Animals , COVID-19/metabolism , Disease Models, Animal , Guanine Nucleotide Exchange Factors/deficiency , Guanine Nucleotide Exchange Factors/genetics , Inflammation/metabolism , Mice , Mice, Knockout
6.
Oxid Med Cell Longev ; 2021: 9919466, 2021.
Article in English | MEDLINE | ID: covidwho-1358940

ABSTRACT

Thrombus is considered to be the pathological source of morbidity and mortality of cardiovascular disease and thrombotic complications, while oxidative stress is regarded as an important factor in vascular endothelial injury and thrombus formation. Therefore, antioxidative stress and maintaining the normal function of vascular endothelial cells are greatly significant in regulating vascular tension and maintaining a nonthrombotic environment. Leonurine (LEO) is a unique alkaloid isolated from Leonurus japonicus Houtt (a traditional Chinese medicine (TCM)), which has shown a good effect on promoting blood circulation and removing blood stasis. In this study, we explored the protective effect and action mechanism of LEO on human umbilical vein endothelial cells (HUVECs) after damage by hydrogen peroxide (H2O2). The protective effects of LEO on H2O2-induced HUVECs were determined by measuring the cell viability, cell migration, tube formation, and oxidative biomarkers. The underlying mechanism of antioxidation of LEO was investigated by RT-qPCR and western blotting. Our results showed that LEO treatment promoted cell viability; remarkably downregulated the intracellular generation of reactive oxygen species (ROS), malondialdehyde (MDA) production, and lactate dehydrogenase (LDH); and upregulated the nitric oxide (NO) and superoxide dismutase (SOD) activity in H2O2-induced HUVECs. At the same time, LEO treatment significantly promoted the phosphorylation level of angiogenic protein PI3K, Akt, and eNOS and the expression level of survival factor Bcl2 and decreased the expression level of death factor Bax and caspase3. In conclusion, our findings suggested that LEO can ameliorate the oxidative stress damage and insufficient angiogenesis of HUVECs induced by H2O2 through activating the PI3K/Akt-eNOS signaling pathway.


Subject(s)
Gallic Acid/analogs & derivatives , Oxidative Stress/drug effects , Signal Transduction/drug effects , Cell Movement/drug effects , Cell Survival/drug effects , Gallic Acid/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/pharmacology , Malondialdehyde/metabolism , Medicine, Chinese Traditional , Neovascularization, Physiologic/drug effects , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism
7.
Nitric Oxide ; 111-112: 64-71, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1164254

ABSTRACT

Symptoms of COVID-19 range from asymptomatic/mild symptoms to severe illness and death, consequence of an excessive inflammatory process triggered by SARS-CoV-2 infection. The diffuse inflammation leads to endothelium dysfunction in pulmonary blood vessels, uncoupling eNOS activity, lowering NO production, causing pulmonary physiological alterations and coagulopathy. On the other hand, iNOS activity is increased, which may be advantageous for host defense, once NO plays antiviral effects. However, overproduction of NO may be deleterious, generating a pro-inflammatory effect. In this review, we discussed the role of endogenous NO as a protective or deleterious agent of the respiratory and vascular systems, the most affected in COVID-19 patients, focusing on eNOS and iNOS roles. We also reviewed the currently available NO therapies and pointed out possible alternative treatments targeting NO metabolism, which could help mitigate health crises in the present and future CoV's spillovers.


Subject(s)
COVID-19/metabolism , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide/metabolism , SARS-CoV-2 , Blood Vessels/metabolism , Gene Expression Regulation, Enzymologic , Humans , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type III/genetics , Respiratory System/metabolism
8.
Med Hypotheses ; 149: 110539, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1091701

ABSTRACT

Using folic acid (FA) as placebo complicates the interpretation of the findings of few RCTs evaluating safety and efficacy of hydroxychloroquine prophylaxis in COVID-19. FA is found to bind to furin-protease and spike: ACE2 interface of SARS-CoV-2. In clinical studies, FA level was lowest among severe patients compared to mild and moderate disease. A single controlled study reported the benefit of combination of folic acid with Pyridoxine & cyanocobalamin in terms of clinical and laboratory cure parameters. One hypothesis associates the differences in geographical variation of disease severity with prevalence of methyl tertahydrofolic acid reductase (MTHFR) C677T polymorphism. Other possible domains, where FA is hypothesized to be beneficial are COVID-19 associated pulmonary hypertension and hyper-homocystinemia. So, scientific justification of using folic acid as placebo in COVID-19 trials seems scientifically not credible and this may be one of the major factors for failure of many agents. We need to be more careful in choosing our placebo especially when conducting a placebo controlled trial.


Subject(s)
COVID-19/prevention & control , Folic Acid/therapeutic use , Hydroxychloroquine/therapeutic use , Placebos , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , Humans , Hyperhomocysteinemia/complications , Hyperhomocysteinemia/drug therapy , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/drug therapy , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Models, Theoretical , Nitric Oxide Synthase Type III/metabolism , Protein Binding , Randomized Controlled Trials as Topic , Research Design , COVID-19 Drug Treatment
9.
Ageing Res Rev ; 64: 101201, 2020 12.
Article in English | MEDLINE | ID: covidwho-907102

ABSTRACT

The COVID-19 pandemic poses an imminent threat to humanity, especially to the elderly. The molecular mechanisms underpinning the age-dependent disparity for disease progression is not clear. COVID-19 is both a respiratory and a vascular disease in severe patients. The damage endothelial system provides a good explanation for the various complications seen in COVID-19 patients. These observations lead us to suspect that endothelial cells are a barrier that must be breached before progression to severe disease. Endothelial intracellular defences are largely dependent of the activation of the interferon (IFN) system. Nevertheless, low type I and III IFNs are generally observed in COVID-19 patients suggesting that other intracellular viral defence systems are also activated to protect the young. Intriguingly, Nitric oxide (NO), which is the main intracellular antiviral defence, has been shown to inhibit a wide array of viruses, including SARS-CoV-1. Additionally, the increased risk of death with diseases that have underlying endothelial dysfunction suggest that endothelial NOS-derived nitric oxide could be the main defence mechanism. NO decreases dramatically in the elderly, the hyperglycaemic and the patients with low levels of vitamin D. However, eNOS derived NO occurs at low levels, unless it is during inflammation and co-stimulated by bradykinin. Regrettably, the bradykinin-induced vasodilation also progressively declines with age, thereby decreasing anti-viral NO production as well. Intriguingly, the inverse correlation between the percentage of WT eNOS haplotype and death per 100K population could potentially explain the disparity of COVID-19 mortality between Asian and non-Asian countries. These changes with age, low bradykinin and NO, may be the fundamental reasons that intracellular innate immunity declines with age leading to more severe COVID-19 complications.


Subject(s)
Aging/metabolism , COVID-19/metabolism , COVID-19/mortality , Nitric Oxide Synthase Type III/metabolism , Nitric Oxide/metabolism , Age Factors , Bradykinin , COVID-19/enzymology , COVID-19/genetics , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Haplotypes , Humans , Immunity, Innate , Nitric Oxide Synthase Type III/genetics , SARS-CoV-2/pathogenicity
10.
Neuromolecular Med ; 23(1): 184-198, 2021 03.
Article in English | MEDLINE | ID: covidwho-871558

ABSTRACT

Ergothioneine (ET) is a naturally occurring antioxidant that is synthesized by non-yeast fungi and certain bacteria. ET is not synthesized by animals, including humans, but is avidly taken up from the diet, especially from mushrooms. In the current study, we elucidated the effect of ET on the hCMEC/D3 human brain endothelial cell line. Endothelial cells are exposed to high levels of the cholesterol oxidation product, 7-ketocholesterol (7KC), in patients with cardiovascular disease and diabetes, and this process is thought to mediate pathological inflammation. 7KC induces a dose-dependent loss of cell viability and an increase in apoptosis and necrosis in the endothelial cells. A relocalization of the tight junction proteins, zonula occludens-1 (ZO-1) and claudin-5, towards the nucleus of the cells was also observed. These effects were significantly attenuated by ET. In addition, 7KC induces marked increases in the mRNA expression of pro-inflammatory cytokines, IL-1ß IL-6, IL-8, TNF-α and cyclooxygenase-2 (COX2), as well as COX2 enzymatic activity, and these were significantly reduced by ET. Moreover, the cytoprotective and anti-inflammatory effects of ET were significantly reduced by co-incubation with an inhibitor of the ET transporter, OCTN1 (VHCL). This shows that ET needs to enter the endothelial cells to have a protective effect and is unlikely to act via extracellular neutralizing of 7KC. The protective effect on inflammation in brain endothelial cells suggests that ET might be useful as a nutraceutical for the prevention or management of neurovascular diseases, such as stroke and vascular dementia. Moreover, the ability of ET to cross the blood-brain barrier could point to its usefulness in combatting 7KC that is produced in the CNS during neuroinflammation, e.g. after excitotoxicity, in chronic neurodegenerative diseases, and possibly COVID-19-related neurologic complications.


Subject(s)
Antioxidants/pharmacology , COVID-19/complications , Endothelial Cells/drug effects , Ergothioneine/pharmacology , Ketocholesterols/toxicity , Nervous System Diseases/prevention & control , Neuroprotective Agents/pharmacology , Antioxidants/pharmacokinetics , Apoptosis/drug effects , Biological Transport , Blood-Brain Barrier , Brain/blood supply , Brain/cytology , Cell Line , Cholesterol/metabolism , Claudin-5 , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/genetics , Cytokines/biosynthesis , Cytokines/genetics , Drug Evaluation, Preclinical , Ergothioneine/pharmacokinetics , Humans , Microvessels/cytology , Nervous System Diseases/etiology , Neuroprotective Agents/pharmacokinetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Organic Cation Transport Proteins , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Symporters , Zonula Occludens-1 Protein
11.
Br J Pharmacol ; 177(2): 314-327, 2020 01.
Article in English | MEDLINE | ID: covidwho-613365

ABSTRACT

BACKGROUND AND PURPOSE: Chloroquine is a traditional medicine to treat malaria. There is increasing evidence that chloroquine not only induces phagocytosis but regulates vascular tone. Few reports investigating the effect of chloroquine on vascular responsiveness of coronary arteries have been made. In this study, we examined how chloroquine affected endothelium-dependent relaxation in coronary arteries under normal and diabetic conditions. EXPERIMENTAL APPROACH: We isolated coronary arteries from mice and examined endothelium-dependent relaxation (EDR). Human coronary endothelial cells and mouse coronary endothelial cells isolated from control and diabetic mouse (TALLYHO/Jng [TH] mice, a spontaneous type 2 diabetic mouse model) were used for the molecular biological or cytosolic NO and Ca2+ measurements. KEY RESULTS: Chloroquine inhibited endothelium-derived NO-dependent relaxation but had negligible effect on endothelium-derived hyperpolarization (EDH)-dependent relaxation in coronary arteries of control mice. Chloroquine significantly decreased NO production in control human coronary endothelial cells partly by phosphorylating eNOSThr495 (an inhibitory phosphorylation site of eNOS) and attenuating the rise of cytosolic Ca2+ concentration after stimulation. EDR was significantly inhibited in diabetic mice in comparison to control mice. Interestingly, chloroquine enhanced EDR in diabetic coronary arteries by, specifically, increasing EDH-dependent relaxation due partly to its augmenting effect on gap junction activity in diabetic mouse coronary endothelial cells. CONCLUSIONS AND IMPLICATIONS: These data indicate that chloroquine affects vascular relaxation differently under normal and diabetic conditions. Therefore, the patients' health condition such as coronary macrovascular or microvascular disease, with or without diabetes, must be taken account into the consideration when selecting chloroquine for the treatment of malaria.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Coronary Vessels/drug effects , Diabetes Mellitus, Type 2/physiopathology , Endothelium, Vascular/drug effects , Vasodilation/drug effects , Vasodilator Agents/pharmacology , Animals , Calcium Signaling/drug effects , Coronary Vessels/metabolism , Coronary Vessels/physiopathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans , Male , Mice, Inbred C57BL , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL